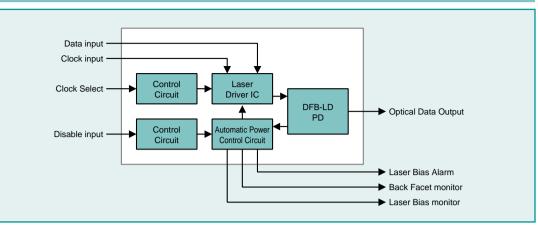
TOSHIBA

Optical Communication Devices 2.5 Gb/s Optical Transmitter Module TOLD346S/396S-TXMS Series


APPLICATION

SONET / SDH (OC-48 / STM-16) applications

FEATURES

- 1.3/1.55 μm Uncooled DFB-LD
- AC-coupled ECL/PECL data/clock input
- Clocked or non-clocked operation
- Single power supply (+5 V or −5 V)
- Automatic power control
- Transmitter disable input
- Package size: 58 (L) x 35 (W) x 8.9 (H) mm
- Tc: -10 °C to +70 °C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit	Note
Storage temperature	Tstg	-40 to +85	°C	
Operating case temperature	Тс	-10 to +70	°C	
Positive supply voltage	Vcc	0 to 5.5	V	(1)
Negative supply voltage	Vee	-5.7 to 0	V	(2)
Input signal voltage	Vi	2.0	V	
Soldering temperature / time	Tsol / tsol	260 / 10	°C / s	

Note: (1) When Vcc connected to +5 V, Vee must be 0 V.

(2) When Vee connected to -5 V, Vcc must be 0 V.

ELECTRICAL AND OPTICAL CHARACTERISTICS

Electrical interface and power supply

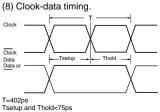
Item	Min	Тур.	Max	Unit	Note
Positive power supply voltage	4.75	5.0	5.25	V	(1)
Negative power supply voltage	-5.50	-5.20	-4.90	V	(1)
Supply current	_	—	350	mA	
Power consumption	—	1.0	2.0	W	
Power-up rate	0.2	—	50	mV/μs	(2)
Input data/clock voltage					(3)
Differential voltage (P-N)	300	800	1000	mVpp	
Per complementary rail	150	400	500	mVpp	
Setup and hold time	_	65	75	ps	(8)
Laser degrade alarm					(4)
Activated	0.0		0.4	V	
Deactivated	2.4		5.0	V	
Laser degrade alarm					
Activation Delay		_	200	ms	
Deactivation Delay		_	400	ms	
Clocked/nonclocked Select voltage					
Clocked operation	GND	_	0.8	V	
Nonclocked operation	Vcc-2.0	_	Vcc	V	
Transmitter disable voltage	Vcc-2.0	—	Vcc	V	
Transmitter enable voltage	GND	_	0.8	V	
Response time					
To disable optical output		—	500	ms	
To enable optical output	-	—	500	ms	
Clook and data differential skew	40	—	_	ps	(5)
Laser bias voltage	0	_	1800	mV	(6)
Back-facet monitor voltage (duty 50%)	-	500	_	mV	(7)

Notes: (1) The transmitter requires a single power supply, the other voltage must be at ground potential.

(2) The transmitter uses electrical programming potentiometers. (8) (

This value is recommended.

(3) Internally AC coupled with 50Ω termination.


(4) Stated for Vcc = 5.0 V, Vee = 0 V. Laser degrade alarm is activated

when the laser bias control circuit can no longer maintain output power through the monitor of laser bias current.

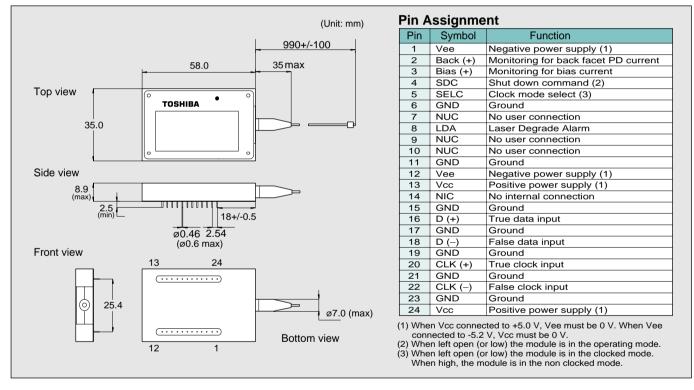
(5) This parameter is intended to specify a maximum input skew.

(6) This bias voltage is converted laser bias current with the ratio 20mV/mA.

(7) This monitor voltage is converted laser back-face monitor current.

Optical gharacteristics

Item	Min	Тур.	Max	Unit	Note
Wavelength					
TOLD346S-TXMS	1280	1310	1335	nm	
TOLD396S-TXMS	1500	1530	1580	nm	
Spectral width	_	0.3	1.0	nm	(1)
Side mode suppression ratio	30	_	_	dB	(2)
Wavelength temperature coefficent	-	0.1	_	nm/°C	
Average output power	-1.0	+1.0	+3.0	dBm	(3)
Output power disable	_	-50	-40	dBm	
Extinction ratio	9.0	10	_	dB	
Optical return loss	20	_	_	dB	
Jitter generation (RMS)	_	_	0.01	Ulrms	
Optical mask	_	_	_		(4)
Maximum path penalty					
TOLD346S-TXMS		_	1.0	dB	@40 km distance
TOLD396S-TXMS	—	_	2.0	dB	@80 km distance


Note: (1) Measured at 20dB down from the maximum point with RMS method.

(2) Measured over a wavelength range of 1480nm to 1600nm.

(3) Measured at the connector output of the pigtail.

(4) G.957/GR-253-CORE.

DIMENSIONAL OUTLINE AND PIN ASSIGNMENT

PRECAUTIONS

- (a) Power supply: Transient electric spike may cause a damage to the laser, the photodiode or IC chips.
 A surge-free power supply and a slow starter circuit should be used.
 To avoid causing an electrical surge, pins should not be connected or disconnected on the test fixture
- (b) The product should be grounded for obtaining the performance.
- (c) Safety: The laser emits invisible light harmful to the human eyes. Direct viewing should be avoided.

OVERSEAS SUBSIDIARIES AND AFFILIATES

Toshiba Electronics Europe GmbH

Düsseldorf Head Office

Centro Direzionale Colleoni

Palazzo Perseo 3.

GU15 3YA. U.K.

Germany

Hansaallee 181, D-40549 Düsseldorf,

Tel: (0211)5296-0 Fax: (0211)5296-400

1-20041 Agrate Brianza, (Milan), Italy

Tel: (039)68701 Fax:(039)6870205

Toshiba Electronics(UK) Ltd.

Tel: (01276)69-4600 Fax: (01276)69-4800

Toshiba Electronics Scandinavia A B

438B Alexandra Road, #06-08/12 Alexandra

Riverside Way, Camberley Surrey,

Gustavslundsvägen 12, 2nd Floor,

Tel: (08)704-0900 Fax: (08)80-8459

S-161 15 Bromma, Sweden

(Singapore) Pte. Ltd.

Toshiba Electronics Asia

Singapore Head Office

Technopark, Singapore 119968

Tel: (278)5252 Fax: (271)5155

Toshiba Electronics Italiana S.R.L.

Toshiba Electronics Asia, Ltd.

Hong Kong Head Office

Level 11, Tower 2, Grand Century Place, No.193, Prince Edward Road West, Mong Kok, Kowloon, Hong Kong Tel: 2375-6111 Fax: 2375-0969

Beijing Office

Rm 714, Beijing Fortune Building, No.5 Dong San Huan Bei-Lu, Chao Yang District, Beijing, 100004, China Tel: (010)6590-8796 Fax: (010)6590-8791

Toshiba Electronics Korea Corporation

Seoul Head Office 14/F, KEC B/D, 275-7 Yangjae-dong, Seocho-ku, Seoul, Korea Tel: (02)589-4300 Fax: (02)589-4302

Toshiba Technology Development (Shanghai) Co., Ltd.

23F, HSBC Tower, 101 Yin Cheng East Road, Pudong New Area, Shanghai, 200120, China Tel: (021)6841-0666 Fax: (021)6841-5002

Toshiba Electronics Taiwan Corporation

Taipei Head Office

17F, Union Enterprise Plaza Bldg. 109 Min Sheng East Rd., Section 3, 10446 Taipei,Taiwan Tel: (02)2514-9988 Fax: (02)2514-7892

(As of August, 2001)

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbock" etc..

The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).

These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customeris own risk. In Touch with Tomorrow

TOSHIBA CORPORATION

Electronic Devices Sales & Marketing Division 1-1, Shibaura 1-chome, Minato-ku, Tokyo, 105-8001, Japan Tel: +81-3-3457-3405 Fax: +81-3-5444-9431

The products described in this document are subject to the foreign exchange and foreign trade laws.

Gallium arsenide (GaAs) is a substance used in some of the products described in this documents. GaAs dust and fumes are toxic. Do not break, cut or pulverize the products, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

Website: http://www.semicon.toshiba.co.jp/eng/index.html

Toshiba America

Headquarters-Irvine, CA

Deerfield, IL(Chicago)

IL 60015, U.S.A.

Edison, NJ

NJ 08817, U.S.A.

Raleigh, NC

TX 75081, U.S.A.

MA 01880, U.S.A.

Electronic Components, Inc.

9775 Toledo Way, Irvine, CA 92618, U.S.A.

Tel: (949)455-2000 Fax: (949)859-3963

One Pkwy., North, Suite 500, Deerfield,

Tel: (847)945-1500 Fax: (847)945-1044

Tel: (732)248-8070 Fax: (732)248-8030

Tel: (919)859-2800 Fax: (919)859-2898

777 East Campbell Rd., #650, Richardson,

Tel: (972)480-0470 Fax: (972)235-4114

401 Edgewater Place, #360, Wakefield,

Tel: (781)224-0074 Fax: (781)224-1095

2035 Lincoln Hwy. #3000, Edison.

5511 Capitol Center Dr., #114,

Raleigh, NC 27606, U.S.A.

Richardson, TX(Dallas)

Wakefield, MA(Boston)